

Faculté des Sciences et de génie Département de génie civil

Utilisation des granulats de verre cellulaire dans les chaussées.

Pauline Segui (Ph.D.)
Guy Doré (Pr. Ph.D., Ing.)
Jean Côté (Pr. Ph.D., Ing.)
Jean-Pascal Bilodeau (Ph.D., Ing.)
Nayara Belfort (Ph.D.)

Chantal Lemieux (M.Sc.)

Chäteauguay

Plan

I. Introduction

II. Volet Thermique

III. Volet Mécanique

IV. Routes expérimentales

V. Activités à venir

I. Contexte et problématique

<u>Durabilité structures</u>

Besoin de matériaux légers, isolants performants et durables.

Résidus de verre :

Besoin de voie de valorisation

Production locale de Granulats de Verre Cellulaire (GVC) : matériau léger, isolant et drainant.

I. Généralités

5

Fabrication

Calcin

(Récupération, Lavage, Broyage) +

Agent gonflant (2 %_m de carbonate)

Moussage 700 - 850°C

état viscoélastique du verre et décomposition gazeuse (CO, CO₂,SO₃)

Concassage = **GVC**

Description

- d/D = 10 / 80 mm
- $\lambda = 0.08 \text{ W/m-K}$
- $\rho_v = 300 \text{ kg/m}^3$

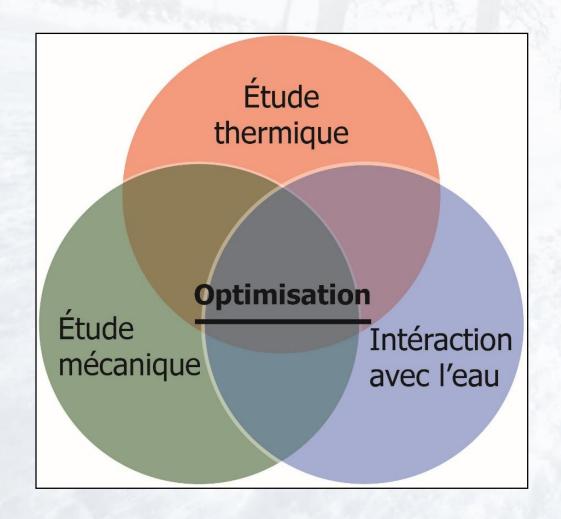
- Aspect spongieux, Touché rugueux et coupant
- Alvéoles millimétriques non connectées

. Les GVC dans le monde


Fondation de bâtiment

Construction routière

Protection de canalisation


- GVC sont utilisés en Europe, en Russie et au Japon depuis plus de 20 ans.
- La Suisse utilise les GVC depuis les années 1970. Avec l'Allemagne et l'Italie, ils consomment 500 000 m³/an.
- La Norvège et la Suède utilisent 50 000 m³/an.
- Début production en Finlande en 2011 et en 2017 aux USA (Pennsylvanie).

I. Programme de recherche

• Laboratoire

• Terrain

• Modélisation

I. Programme de recherche

Étudier et valider les outils de conception de chaussées et remblais avec des GVC

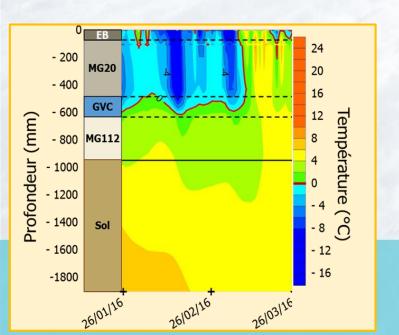
- Proposer un protocole de caractérisation
- Développer des critères granulométriques optimisés pour différentes applications
- Définir les champs d'application
- Développer des principes et outils de conception
- Proposer des éléments de spécification

II. Volet Thermique

Étude laboratoire

Conductivité thermique à l'aiguille

$$\succ \lambda_{particule}$$
 = conduction pure



Essai en cellule thermique (1m³) maîtrise M. Bradette

$$\lambda_{eq}$$
 = conduction + radiation

$$\geq \lambda_{D}$$
 = conduction + radiation + convection

Performance planche d'essai

Étude comparative : GVC / XPS / témoin

$$\geq \lambda_{eff}$$
 = conduction + radiation + convection

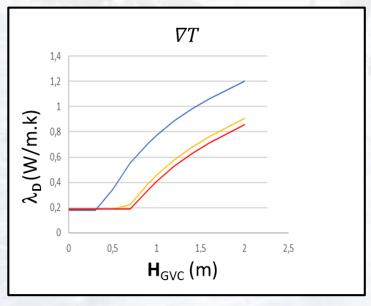
II. Volet Thermique -

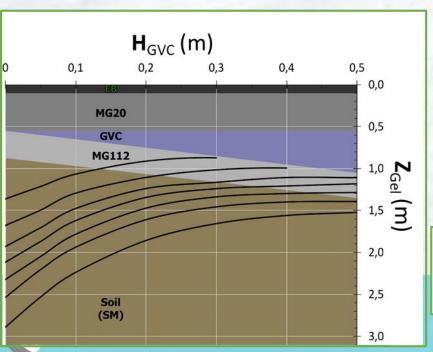
- Conductivité thermique à l'aiguille
 - Particule: 0,05 / 0,1 (W/m-K)
 - Éprouvette compactée (0/31,5 mm) : 0,04 / 0,13 (W/m-K)
- Cellule d'échange thermique

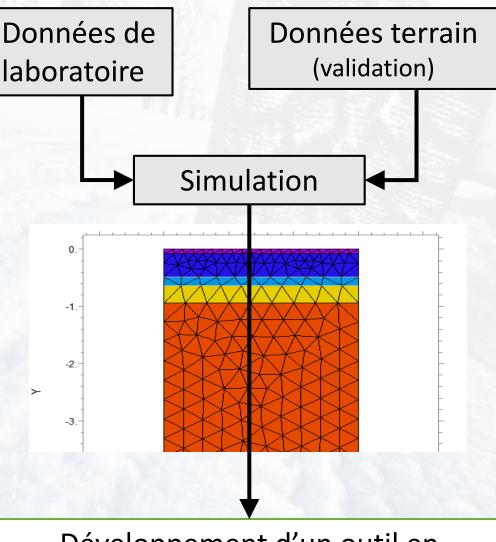
(développée à ULaval, M-H. Fillion, 2008 +

Travaux M. Bradette)

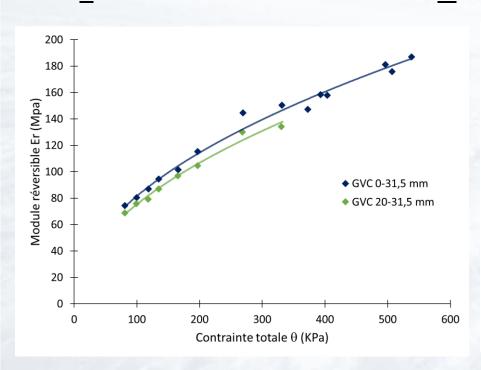
Échantillon	n	λeq (W/m-K)	K (m²)
> 20 mm	0,352	0,18	0,345 x 10 ⁻⁶
Vrac	0,217	0,20	0,121 x 10 ⁻⁶
20%v < 20 mm	0,199	0,20	0,104 x 10 ⁻⁶

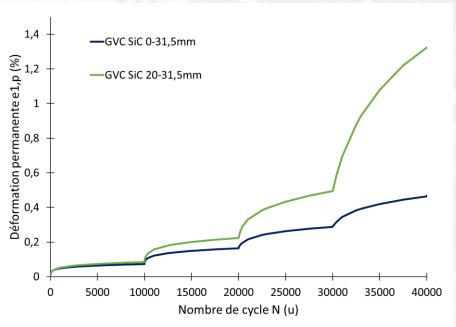

- => Conductivité thermique équivalente λ_{eq} (potentiel isolant)
- => Perméabilité intrinsèque K (potentiel convectif)





II. Volet Thermique / Abaque de conception




Développement d'un outil en fonction de ∇T régionaux, H_{GVC} et λ_{D}

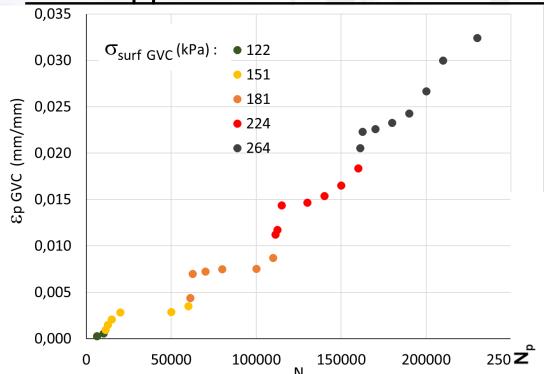
III. Volet Mécanique

 M_R (AASHTO.307.99) & E_P (EN 13286-7) 0/31,5 mm - 20/31,5 mm

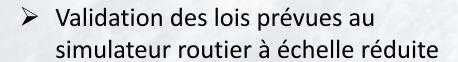
• MÉCANIQUE : Avantage à avoir la granulométrie la plus étalée

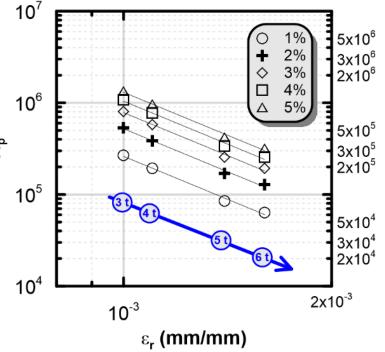
III. Volet Mécanique / Essai au simulateur routier et climatique

Développement des lois d'endommagement des GVC


Charge 1/2 essieu (kg)	σ surf GVC (kPa)	Nbr de Charge
2 000	122	5 000
2 500	142	5 000
3 000	151	50 000
4 000	181	50 000
5 000	224	50 000
6 000	264	70 000

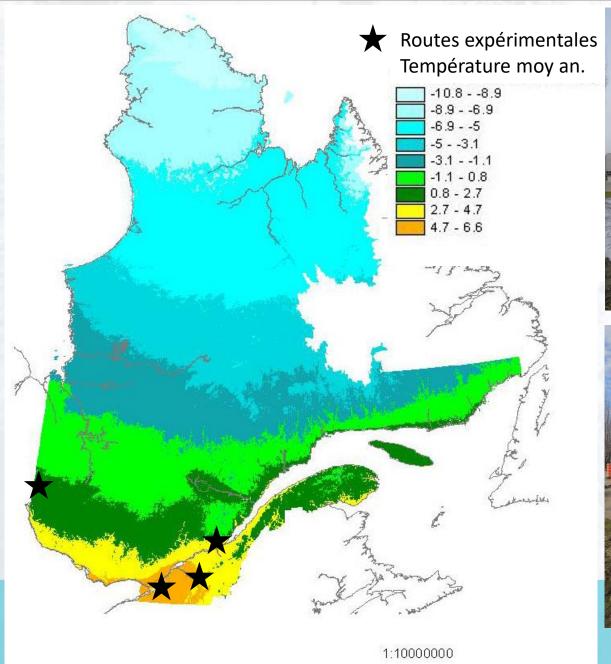
EB	100 mm
MG20	200 mm
GVC	200 mm
MG112	250 mm
Sable Silteux	1100 mm


12


III. Volet Mécanique / Essai au simulateur routier et climatique

Développement des lois d'endommagement des GVC

 Déformation réversible admissible sur la couche de GVC en fonction de N et de % déformation permanente



IV. Routes expérimentales

V. Activités à venir

- 1. Laboratoire / Complément
 - Mécanique : Validation des lois d'endommagement au petit simulateur
 - Environnementale: Interaction avec l'eau
- 2. Modélisation et développement d'abaques de conception
 - Thermique
 - Mécanique
 - Remblai léger
- 3. Planche d'essai suivi mai 2021
- 4. Articles et Conférences
- 5. Projet Pilote / Nouvelles méthodes de conception
 - MTQ: remblai et route

Merci!

Faculté des Sciences et de génie Département de génie civil

Transports, Mobilité durable et Électrification des transports

